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The dynamics of a longitudinally cold, charged-particle beam can be simulated by dividing the beam
into slices and calculating the motion of the slice boundaries due to the longitudinal electric field
generated by the beam. On each time step, the beam charge is deposited ontg amid, and an
existing (, z) electrostatic field solver is used to find the longitudinal electric field. Transversely,
the beam envelope equation is used for each slice boundary separately. In contragj-factioe
model, it can be shown analytically that the repulsive electric field of a slice compressed to zero
length is bounded. Consequently, this model allows slices to overtake their neighbors, effectively
incorporating mixing. The model then effectively describes a cold fluid in longitudina} phase
space. Longitudinal beam compression calculations based on this cold phase fluid model showed
that slice overtaking reflects local mixing, while the global phase space structure is
preserved. ©2003 American Institute of Physic§DOI: 10.1063/1.1541015

I. INTRODUCTION equation for each slice boundary separately. Since the shield-
) _ing of the longitudinal electric field by the conducting pipe

Charged-particle beams can be compressed longitudis i onding the beam depends on the distance of the beam to

nally by imposing a head-to-tail velocity gradient. The trans-he pipe wall, an accurate calculation of the transverse beam

verse focusing lattice in which compression takes placgynamics is necessary to simulate the longitudinal dynamics
should be designed carefully to ensure that the beam remai rectly.

approximately matched. In order to design such a lattice, the 1,4 longitudinal electric fieldE, can be calculated in

longitudinal dynamics of the beam needs to be simulatedqyerg ways. Most commonly, thefactor model is used:
accurately, such that the longitudinal compression and there-

fore the beam current at a given location along the lattice can _ g oJA
be calculated correctly. .=~ Amey 97" 2
Generally, three-dimension&D) particle-in-cell simu-
lations take a large amount of computing time and are ther :
fore unattractive as design and scoping tools. Instead, a loractor given by
gitudinal fluid/transverse envelope model as shown in Fig. 1 R?
can be used.In this model, the beam is divided into slices ~ 9=In| —
longitudinally. In the nonrelativistic limit, the longitudinal nev
beam dynamics can then be calculated by solving Newton'# which R is the pipe radius and, anda, are the horizontal
equation for each slice boundary separately: and vertical beam semi-axes. Thefactor model is valid if
the beam density is uniform, and the beam semi-axes as
well as the line charge density vary slowly over a longitudi-
nal distance comparable to the pipe radius.
The g-factor model applied to an ideal cold fluid breaks
in which m andqe are the particle mass and chargeand  down in three cases. Near the beam ends, the beam semi-
v; are the longitudinal position and velocity of slice bound- axes and line charge density vary rapidly, thereby violating
ary i, andE, is the longitudinal electric field generated by the assumptions of thg-factor model. Second, for highly
the beam. compressed beams, the beam length may be short or compa-
In addition to the longitudinal position and velocity, a rable to the pipe radius. Finally, in shocks the beam proper-
horizontal and vertical beam semi-axis is associated withies vary rapidly over a short distance.
each slice boundary. The transverse dynamics of the beam More accurate variants of thgefactor model have been
are then calculated by employing the transverse envelopgerived, in which the restrictions on the validity of the
g-factor model are easédUsing these models, it was no-
dpresent address: Human Genome Center, Institute of Medical Scienc&i,Ced in simulations that slices tend to overtake each other,
University of Tokyo, Japan; electronic mail: mdehoon@ims.u-tokyo.ac.jp particularly near the beam ends if a large X00) number of

ej_n which \ is the line charge density arglis a geometry
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z _ The solution to this equation can be written in terms of a
& - Fourier—Bessel expansion:
- X F
AQ:L/2 AQ3/2 AQi—:L/z AQin/z AQN—:L/z ¢(r’2):n§1 fn(Z)JO F ’ (5)
— in which Jg is the Bessel function of order zerq, is thenth
|| zero ofJy, andf,(z) is a set of functions to be determined.
' ' ' o ! b ! We assume that the charge density is transversely uniform up
) 1 ) ) 1 ) 1 1 ) .
! ! ! o ! P ! to the beam radiua(z):
Z, () z (h z,(h zZi, (h ozt Z,, (b Zy ()
Vi vl v T v vl VT v (r.2)= A (2) T ®
P a(2)? a(z))’

FIG. 1. The longitudinal fluid/transverse envelope model. ) ] ] i ] ) o
in which \ is the line charge density anlis the Heaviside

step function. For different values af the Bessel functions

slices were used. This produced unphysical results, since trﬂé’(X”r/R) are or_thogona?. V_Ve can then find an ordinary
: . . _differential equation foff ,(2):
charge of a slice compressed to zero width leads to an infi-

nitely large current at that location. " Xn| 2
Previously, several explanations for the occurrence OF"(Z)_f“(Z) R
slice overtaking have been propogetkirst, the fluid model
may be invalid in the physical regime of interest. Second, the _ _ 2 M2 1 X [ *n(2) )
nonlinear nature of the fluid equations may cause longitudi- €0 ma(2) [Xpdi(x) P RN R )

nal acoustic waves occurring in the beam to steepen intg, which the primes denote differentiation with respectto
shock waves. The fluid model then breaks down as fluidryjs equation can be solved®as

properties become double-valued. Finally, the calculated lon-

gitudinal electric field may be insufficiently accurate, par-¢ (2)=— 1
ticularly near the beam ends. A meo [Xnd1(Xn)]?
In this paper, we will derive an analytic expression for ) ,
N - . : e Xn Xpa(z")\ N(Z")
the longitudinal electric field in a charged-particle beam. X exg — = |z—2'| |3, —dz’,
From this expression, we can show that the model shown in - R R a(z’)
Fig. 1 allows slice overtaking to occur. This means that a 8

conventional fluid model breaks down. Next, we describe a . .
. .. In which we used the boundary condition tHg{z) —0 for

new method to calculate the space charge field by deposmn% . h . | h

the charge of the beam onto an, (z) grid and using an | .|_)oo' Summing over the Fourier—Bessel components then

existing (, z) field solver to find the longitudinal electric gives

field. This method should give accurate results, even in the Xnl 1

regimes where thg-factor model fails. We then allow slices ¢(1:2)= 77_50,2‘1 o\ R Txoda (k) 12

in the model to pass through each other, resulting in a cold

phase fluid model, in which the beam is described as a cold » Xn , Xpa(z")\ N(Z") ,
fluid in z, v, phase space. X fﬁw exp< —Rrlz-z |>Jl R |az)
C)
II. THE LONGITUDINAL FIELD OF A SPACE-CHARGE- To find the longitudinal electric field, we take the partial
DOMINATED BEAM derivative with respect ta and average transversely:
~ First, we derive analytically the longitudinal electric <EZ(Z)>:_LZJW¢(V.Z) ot 10
field of a beam in an infinitely long circular pipe. At beam Tac )y 0z
energies relevant to heavy-ion inertial fusion, the beam can i yields
be considered to be nonrelativistic in the beam frame. By
solving the equations of motion in the classical limit in the 2 - 1 Xpa(2)
beam framg, 'fo!lowed by a transformation to t.he laboratory (E2))= meoa(z) =1 [xndi(Xx) P R
frame, relativistic effects can be captured to first order. We
will therefore calculate the longitudinal field generated by * , Xn ,
the beam in the beam frame in the nonrelativistic limit. X f_w sgnz-z )exp( B E|Z_Z |)
We approximate the beam to be circular transversely in-
stead of elliptical, using.= \/apa, for the radius. Poisson’s [ Xna(z") MZI)]d )
, , A —= —dz'. (11
equation can then be written as R a(z')
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Incidentally, we can derive thg-factor model from this
equation by assuming that the charge densitya? is uni-
form throughout the beam and expanding the factor in brack-

ets in a Taylor-series arourmd = z:

2 IN(2)

(Ef2))=———
" R 1 xpa| [ Xpa
X2 xa Do P Rl R

12

Using Eq.(A3) in the Appendix, we can evaluate the sum as

3In(R/a) to find theg-factor model given in Eqg2), (3).

Now we can calculate the longitudinal electric field act-

ing on a slice boundary for a single slice of length @ith
uniform line charge density and beam radiua. In Eq.(11),
we useA(z')=\[6(z'—L)—6(z'+L)] and a(z’')=a to

find
2
Xpa
J; -
E,(2))= 2 RIR
(Ez foaz 2 | odi | %
5 XL} [ X,z 13
X 2 ex R sin =k (13
On the slice boundarieg= =L, we find
] xpa) 12
MR R
(Bo(=L))= +7-rea Zl Xpd1(Xp) x_n

(14

|1 2x,L
ex R ||

For a slice compressed to zero length-¢0), this gives

2

] Xna
(o=t L & |HNR 15
z= 7TEOa n=1 XnJl(Xn)

The sum on the right-hand side is equaktdndependent of
the ratioa/R, as shown in the Appendi)Eq. (A4)]. Using

2LA=Q, in which Q is the charge in the slice, we find

Q

27TE a2

(Ep).= (16)
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Ill. THE COLD PHASE FLUID MODEL

We will now describe the cold phase fluid model,
which the longitudinal electric field is calculated accurately
and slices are allowed to overtake each other. The slice
boundaries are kept unbent by averaging the longitudinal
electric field transversely. This model was implemented as a
new module, named Hermes, of the WARP simulation
packagé€. In order to calculate the longitudinal electric field
accurately, WARP’s I(, z) field solver was used instead of
the g-factor model. The charge of the beam slices is depos-
ited onto an €, z) grid, assuming that transversely all slices
are circular instead of elliptical, and the field solver is called
to calculate the electric field. This allows us to calculate the
electric field correctly even near the beam ends, and also for
highly compressed beams. In addition, the field can be cal-
culated even after slice overtaking has occurred.

In conventional fluid models, the line charge density can
be calculated by expandinQ(z) in a Taylor series, where
Q(2z) is defined as the amount of charge to the left of posi-
tion z. Using the variables shown in Fig. 1, we find

AQi. 1/2) Zi—Zi )

Ziv1—Zi )\ 41— Zi—1

)\(Zi):(
+(AQi1/2)

Zi—Z

Zi 17

Zi+1—2i—1)+o(2)' 7
which is a weighted average of the average line charge den-
sity in the two slices. If either of the slices is compressed to
zero width, N\ (z) diverges. The current, as needed in the
envelope equation, would then become infinite.

Instead, in the cold phase fluid model the line charge
density is calculated by summing the charge deposited onto
the (r, z) grid at a givenz-location. This forces the line
charge density to be finite, even in the event of slice over-
taking. Effectively, the line charge density is averaged over a
longitudinal distance corresponding to one grid cell width.
This is similar to the concept of artificial viscosftywhere a
steep gradient is artificially smeared over several grid cell
widths in order to avoid divergences.

Alternatively, one may consider expanding the inverse
function z(Q), which yields

e
)\(Zi) AQi+ 12 AQi+ 1/2+AQi7 1
Zi—Zi-1 AQit 112
+(AQi1/2)(AQi+1/2+AQi1/2 +O(2)1
(18)

This equation shows that the repulsive electric field is equaivhich is a weighted harmonic average of the line charge
to the field of an infinite slab of surface Charge densitydenSity in the two slices. The line Charge density calculated
Q/ma?, as expected from Gauss’ law. The repulsive electridrom this expression remains finite even if one of the two
field is finite for a nonzero beam radias Consequently, if ~slices is compressed to zero width. If equal charges are as-
two slice boundaries approach each other with a sufficientlpigned to all slices, we find

large velocity, they will overtake each other. In comparison, 2AQ

in the g-factor model in Eq(3) the derivatived\/dz would N(z)=
become infinite, yielding an unbounded repulsive force be-

tween the slice boundaries that would prevent slice overtakwhich is the total charge in the two slices divided by their
ing. combined length.
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The longitudinal dynamics of the beam can most easily [ T T T ]
be understood as the motion of a cold phase fluid,iw, - .
phase space. The phase fluid is represented as a continuous T
curve in phase space. Because the curve has zero width, the
phase fluid is considered to be cold. However, since we al-
low slice overtaking to occur in this model, the curve may
fold over in phase space, which means that more than one
fluid velocity may be associated with a given locatmnin
the limit of extreme overtaking, the resulting curve in phase I
space may be seen to represent in an approximate manner a® 49|
thermal distribution inv,. In most cases, however, slice -
overtaking is observed to occur on a much smaller scale,
indicative of mixing on a micro-scale. These cases cannot be
treated by a conventional fluid model, in which the current
would have become infinitely large during the event of slice
overtaking, causing the transverse envelope equation to
break down.

The cold phase fluid model bears some similarities to a Distance (m)
particle-in-cell model. The main differences are the connec-

L. . . L . FIG. 2. The horizontal and vertical beam semi-axes, as well as the aperture,
tivity between the slice boundaries and the ability of slices to P

- - as a function of position along the drift compression section.
stretch and contract longitudinally and transversely. In a con-
ventional particle-in-cell simulation, particles are not ordered
and have a fixed size. The final beam pulse will therefore be different from the
desired final beam pulse. The difference is typically
negligiblel? since the beam radii in the forward and back-
ward run are approximately equal on average even after
We have applied the cold phase fluid model to design amematching.
example drift compression system of the Integrated Research Generally, the drift compression section for heavy ion
Experiment(IRE), a major next step in the development of inertial fusion is designed such that the beam expands trans-
Heavy lon Inertial Fusiof! To design such a system, we versely near the end of drift compression in order to enable
first define a desired final pulse shape at the end of driffocusing the beam onto a small spot. In the example drift
compression. We transport this beam backward in time ovecompression system shown here, the beam expands smoothly
one half period of a transport lattice. As the beam expandfom 1.5 cm at the beginning of drift compression to 6 cm at
longitudinally during this run, its current decreases, and weahe end. The aperture was chosen to increase in finite steps.
adjust the lattice half period and quadrupole strength tdrhis drastically reduces the run time of a comparative 3D
match the new current. We then reload the beam at the end pfrticle-in-cell simulation of the system, since the capacity
drift compression, and run it through the adjusted lattice halfnatrix to calculate the image charges on the pipe needs to be
period. This process is iterated over until the properties ofecalculated only a few times.
the half period have converged. We then continue to the next A drift compression section was designed for & Kn
lattice half period. All lattice half periods are set up usingbeam of 3.90625.C at an energy of 200 MeV, which are
this routine, until the current at the beam center has detypical IRE parameters. The final beam duration was chosen
creased to a user-specified value at the beginning of drifto be 3 ns, while the final beam profile consisted of a flat-top
compression. This procedure sets up the transverse focusimgth 25% parabolic ends on each side. The beam was di-
lattice, and also finds the required initial beam profile andvided into 400 slices longitudinally, each slice having the
head-to-tail velocity gradiertf same amount of charge. The longitudinal electric field was
The beam current changes most rapidly near the end afalculated on a 64512 (r, z) grid. A time step size was
drift compression, causing a mismatch to occur there. In theised that corresponds to a distance traveled by the beam of
backward calculation, this mismatch then persists until thebout 5 mm.
beginning of drift compression. To minimize the occurrence  Figure 2 shows the horizontal and vertical semi-axes of
of mismatches, the beam can be rematched at the beginnirige beam along the drift compression section both for the
of drift compression. Since the beam current changes slowlpeam center and for the tail of the bedufefined as the
compared to a betatron period for most of the drift compresieftmost slice boundary in the simulatioriWhereas virtually
sion, after rematching the beam stays adiabatically matchedo mismatch occurs at the beam center, near the end of drift
in a forward run. Near the end of drift compression, thecompression a small mismatch develops at the tail, where the
rapidly increasing current again incites a mismatch. Thisbeam current increases most rapidly. A similar mismatch oc-
mismatch does not affect the beam as seriously though, beurs for the head of the beam.
cause it lasts for only a short distance. The position of the slice boundaries at the end of drift
Rematching the beam at the beginning of drift comprescompression is shown in Fig. 3 as a function of the slice
sion causes the forward run to differ from the backward runindex. On a global scale, this curve seems to be very smooth.

80 -

Beam radius (mm)
o
o
T

Aperture

20 b Beam center

IV. EXAMPLE CALCULATION
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FIG. 3. The position of the slice boundaries as a function of their index at

the end of the drift compression section. Even though the curve appears ¥ 5. The longitudinal phase space of the beam at the end of the drift
be very smooth and monotonically increasing, this figure contains nine S”c%ompression section
overtaking events. ’

: . Lo Figure 6 shows the longitudinal phase space of a section
However, there were nine occurrences of slice overtaking in ) . : .
(?(Zf the beam in which slice overtaking occurr@mmpare to

beam center is shown in Fig. 4. This illustrates that slice 'g. 4. The longitudinal yelocny has_ becom_e double valued
. : - as a consequence of slice overtaking. This would cause a
overtaking should not be regarded as a major deviation of the . .
X . : conventional fluid model to break down.
behavior of the beam. Rather, slice overtaking suggests thé

occurrence of longitudinal mixing on a local scale.

The longitudinal phase space is shown in Fig. 5. NeaV- DISCUSSION
the beam ends, an increase in the longitudinal emittance is The longitudinal dynamics of a charged particle beam
manifested by a larger area of phase space occupied by than pe simulated by dividing the beam into slices longitudi-
beam. The emittance growth can be understood in more dgyg)ly and calculating the longitudinal motion of the slice
tail by performing 1D (longitudina), 2D (r, 2), or 3D  poyndaries. Previously, the beam was then treated as a 1D
particle-in-cell simulations of the beam. Globally, the phase&;yiq, in which slices retained their order, and slice overtak-
space area occupied by the beam is still well represented Q) was considered to be caused by an insufficiently accurate
a smooth curve, which validates the applicability of the coldgjmyiation. In addition, a slice compressed to zero width

phase space model in this regime. would have an infinite line charge density, resulting in an

— T T T T T T : | : | : |

74 .458 - - B

0'10455j Slice t

— | overtaking i

g - i

= S L 4

8 ~ L 4

- > 0.10454F Y -

n 74.456F . b L -
- o

o) L ] o - i

a ° L 4

- - > - 4

0.10453 =

74 .454F Slice - | i

overtaking i - B

0.10452 =

1 1 I I | 1 L I I | L 1 I 1 | 1 ] C . | ' | \ I | L | . | L

140 150 160 170 74.454 74.456 74.458

Slice boundary index Position (m)

FIG. 4. The position of the slice boundaries of a short section of the beanfIG. 6. The longitudinal phase space of a section of the beam at the end of
as a function of their index at the end of the drift compression sectionthe drift compression section, showing that the longitudinal velocity has
showing an example of slice overtaking. become double valued due to slice overtaking.
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infinite current in the transverse envelope equation. In pracavoid global mixing by a careful design of the drift compres-
tice, simulations were therefore stopped as soon as two slicesson system, the cold phase-space model showed that mixing
overtook each other. on a local scale does occur.

However, the repulsive force on a slice boundary being
bounded as a slice is compressed to zero width implies th&fCKNOWLEDGMENTS

this quel |ntr_|n5|cally,_ though |_mpI|C|tIy, mclude_s slice The authors wish to thank W. M. Sharp for useful dis-
overtaking. A simple fluid model is therefore unsuitable to . ;
cussions on the fluid model.

describe the longitudinal dynamics of a beam and should be This work was performed under the auspices of the U.S
replaced by a cold phase fluid model. An infinite line charg P . . pice . .
epartment of Energy under University of California Con

density can then be avoided by averaging the charge densi Yacts No. DE-AC03-76SF00098 at LBNL. and No. W-7405-
over a small longitudinal distance. ENG-48 at LLNL ’ '

In simulations of our cold phase fluid model, slice over-
takln_g occurred regularl_y without o_llsturblng the overall dy- APPENDIX: CALCULATION OF BESSEL SUMS
namics of the beam. Slice overtaking may be caused by the
numerics as well as by the physics of the problem. Whereas The Kneser—Sommerfeld formula for a Bessel function
slice overtaking events are expected to occur near the beaaf order zero is given by
ends, where the longitudinal field varies rapidly, numerics -
may be the cause of slice overtaking in the beam core. How=®
ever, even then a cold phase fluid model is preferable over &1 (S°—X3)[J1(Xy) 12
simple fluid model, as it allows us to perform a sequence of 3
simulations of increasing accuracy. In a converged simula- — M[JO(S)YO(Q’S)_YO(S)JO(a’S)] (A1)
tion either slices do not overtake each other, or the few re- 4J0(s) ,
maining slice overtaking events do not appreciably affect thgor 0<a<a’<1. This formula can be derived using

calculation of the physical quantities in which we are inter-cauchy’s residue theorem. A different version of the
ested. A simple fluid model does not allow us to performkneser—Sommerfeld formula given in the classic text on
such a sequence of simulations, since numerous simulatiofessel functions by Watséhis incorrect:6-1°

would have to be halted prematurely due to slice overtaking. By taking the derivative with respect ®of both sides

In addition, increasing the number of slices to improve theof this equation, and evaluating the resulsat0, we find
accuracy of a simulation leads to a closer distance between

. . . . . . J X J X Ct’,) 1
the slice boundaries, making sl_lce oyertakmg more likely. D of 4n )Jo( n2 — Z[(a®+a')In at a?—1].
Therefore, even very accurate simulations with a large num- =1 x;[J1(Xn)] 8
ber of slices may break down if a simple fluid model is used. (A2)
. .SI'.Ce overtaking ca_usgd by t_h(_a physics of the problgm 'Next, we take the derivative with respectdd to find
indicative of local longitudinal mixing of the beam. Rapidly
expanding ends of a highly compressed beam, or imperfect Jo(Xpa) 1 (Xpa”) 1
; ; z =——a'lna. (A3)
matching as in the example we showed, may lead to local &, X[ J1(x) ]2 4
mixing and therefore to slice overtaking in the cold phase , " _ o
fluid model. In addition, to investigate the effect on drift FOr a=a', this reduces to the Bessel sum appearing in Eq.
compression of errors in the initial longitudinal velocity gra- (12). By taking the derivative with respect @ we find
dient, a random longitudinal velocity error may be added to J J N1
the slice boundaries initially. This may lead to slice overtak- >, 1{Xne) 1(Xn2a )_1 a—,
ing at an early stage of the simulation. =1 [Xnda(Xn)] 4 a
In the case of extreme slice overtaking, the resultingwhich for «=«’ reduces to the Bessel sum used to derive
phase space structure can be seen as representing the therggl (16).
spread in the longitudinal velocity. Additional calculations Alternatively, Eqs.(A3), (A4) can be derived by setting
using particle-in-cell simulations would be necessary to unthe radial electric field of an infinitely long cylindrical beam

derstand such a phase space structure fully. ~with radiusa equal to the radial electric field calculated from
We can compare our results to the case of a highthe electrostatic potential given in E).

brightness electron beam, in which the beam length may be

muc_h shorter than the plp_e radius. The presence of the C_OWW. M. Sharp, J. J. Barnard, D. P. Grote, S. M. Lund, and S. SPYo;

ducting wall can then be ignored and a free-space solutionceedings of the 1993 Computational Accelerator Physics Conference

can be employed. An example of longitudinal bunching of an 22-26 February 1993, Pleasanton, California, AIP Conf. Proc. 297, edited

electron bearf using a particle-in-cell calculation shows Y R- Ryne(American Institute of Physics, New York, 199%p. 540~
- . 8.

hpw 'Fhe Ior!glltudlnal phase space folds over, _resultmg in loN-25 Hofmann, CERN 77-13, 1977, p. 139.

gitudinal mixing on a global scale. In the regime relevant to 3w. M. Sharp, A. Friedman, and D. P. Grote, Fusion Eng. De8igr33,

heavy ion fusion, however, the beam is much longer than thg201(1996-

; ; - ; ; _"W. M. Sharp(private communication, 2001
pipe radius at the beginning of drift compression, and com 5W. M. Sharp, D. A. Callahan, A. Friedman, and D. P. Gratemceedings

parable to the pipe radius_at the end. A free-space solutiongs the 1996 Computational Accelerator Physics Confere@de-27 Sep-
would therefore not be suitable. Although we were able to tember 1996, Williamsburg, Virginia, AIP Conf. Prog91, edited by J. J.

Jo(Xn@)Jo(Xaa")

(A4)
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